“打開”原子核 探索同位素
不久前,一個多國聯(lián)合研究小組首次觀測到氧28,它是有史以來最重的氧同位素(含有8個質(zhì)子和20個中子)。它的發(fā)現(xiàn)之所以這么重要,是因為按照理論預(yù)測,氧28極可能是穩(wěn)定的,但實際上它只存在非常短暫的時間,就迅速衰變分解了。這意味著,人們之前對于原子模型的假設(shè)和規(guī)律的認(rèn)知存在一定偏差。同時,也為進(jìn)一步了解元素及其同位素的形成、原子結(jié)構(gòu)模型、強弱相互作用等重大基本問題提供了新的思路和挑戰(zhàn),有可能會引發(fā)相關(guān)領(lǐng)域的理論革新。
發(fā)現(xiàn)原子核里的微觀世界,分析物質(zhì)的基本組成
關(guān)于物質(zhì)的基本組成問題,早在數(shù)千年前古人就開始思考。比如古希臘的四根說(四元素說)、中國古代的陰陽五行學(xué)說,都是人們對于世界本質(zhì)認(rèn)知的代表理論。公元前5世紀(jì)的古希臘學(xué)者德謨克里特認(rèn)為,任何事物都是由一種不可再分的微粒,也就是原子所構(gòu)成的?!赌印そ?jīng)下》中“非半弗斫,則不動,說在端”也指出,物質(zhì)不斷分割到無法再分時的物質(zhì)叫作“端”。這些都是原子理論的雛形,直到2000多年后的20世紀(jì)初,人們才搞清楚原子的結(jié)構(gòu)。
人們對原子的認(rèn)識伴隨著對元素的研究不斷發(fā)展。18世紀(jì)末,卡文迪許、舍勒、普里斯特利、拉瓦錫相繼發(fā)現(xiàn)并完善氧和氫元素的性質(zhì),19世紀(jì)成為元素研究的高峰期,一個又一個元素的發(fā)現(xiàn)讓人們進(jìn)一步認(rèn)識物質(zhì)的組成,并開始總結(jié)一些規(guī)律。
1803年,英國科學(xué)家道爾頓提出了物質(zhì)(元素)都是由不可分的微粒——原子構(gòu)成的,每種元素的原子都有自己特殊的質(zhì)量——原子量。1869年,俄國科學(xué)家門捷列夫基于元素質(zhì)量與其化學(xué)性質(zhì)的周期性變化提出了大名鼎鼎的元素周期表,十分準(zhǔn)確地預(yù)測了一些未知元素的性質(zhì)。直到此時,人們都還是相信,原子是不可再分的粒子。
直到1897年,英國科學(xué)家湯姆生通過測定陰極射線在電磁場下的運動速度和偏轉(zhuǎn)角度,計算出這種帶負(fù)電的陰極射線粒子質(zhì)量僅為氫元素的約兩千分之一,這就是我們現(xiàn)在熟知的電子。比原子更小的電子對原子不可再分理論提出了挑戰(zhàn),湯姆生據(jù)此提出了帶正電的原子表面鑲嵌著電子的“葡萄干布丁”模型。1911年,湯姆生的學(xué)生盧瑟福做了一個著名的α粒子散射實驗,用帶正電荷的α粒子(即氦4原子核)轟擊金箔,發(fā)現(xiàn)大部分α粒子直接穿透了金箔,同時有極少部分的氦離子被大角度散射甚至反射了回來。盧瑟福由此推斷原子內(nèi)部結(jié)構(gòu)并不是均勻分布,而是集中在一個非常小的范圍內(nèi),提出了電子繞著帶正電的原子核運動的“行星結(jié)構(gòu)”模型。
1919年,盧瑟福繼續(xù)用α粒子轟擊氮氣。過程中,他發(fā)現(xiàn)氮釋放出一種與氫原子核質(zhì)量和電荷一致的粒子,將其命名為質(zhì)子。從而證明了原子核可以再分,這是歷史上第一次人工核反應(yīng)。不過,從原子核的電荷推測出的質(zhì)子數(shù)與大部分原子的質(zhì)量卻對不上——大部分原子的質(zhì)量都比其中的質(zhì)子加電子重很多。與此同時,還發(fā)現(xiàn)一些具有相同質(zhì)子數(shù)的原子卻具有不同的質(zhì)量,因此盧瑟福猜測原子核內(nèi)部還有一種不帶電的中性粒子。1932年,盧瑟福的學(xué)生查德威克用α粒子轟擊鈹,產(chǎn)生了一種不帶電的射線,再用此射線轟擊氫氣、氮氣,結(jié)果打出了氫核和氮核,通過測定被打出氫核和氮核的速度,發(fā)現(xiàn)這種未知射線的質(zhì)量和質(zhì)子接近,確證了中子的存在。至此,由質(zhì)子、中子、電子組成的經(jīng)典原子結(jié)構(gòu)模型建立起來,盧瑟福也被譽為“核物理之父”。
找到同位素,探索善變的元素世界
在研究原子內(nèi)部結(jié)構(gòu)的過程時,科學(xué)家們也觀察到了一些放射性元素衰變的現(xiàn)象和規(guī)律,盧瑟福和英國化學(xué)家索迪在研究釷、鐳、錒等放射性元素后,于1903年提出了元素嬗變理論:放射性屬于原子自身變化,放射出α、β、γ射線后,變成另一種原子,直至穩(wěn)定為止。其中α射線正是盧瑟福在發(fā)現(xiàn)原子核和質(zhì)子、中子實驗中使用的氦離子(α粒子),β射線是電子,γ射線是光子。這一時期從鈾、釷等放射性元素中不斷分離出一個個“新”放射性元素,多到元素周期表中沒有足夠的空位放進(jìn)這些“新”元素,然而這些元素中,有不少元素化學(xué)性質(zhì)卻是一致的。因此在整理這些數(shù)據(jù)后,索迪于1910年提出了著名的同位素假說:存在著不同原子量和放射性而其他物理化學(xué)性質(zhì)相同的化學(xué)元素變種,應(yīng)在元素周期表上占據(jù)同一個格子。
此后不久,人們就分別從鈾238和釷232得到鉛206和鉛208。1912年,湯姆生為了深入研究電子,改進(jìn)了帶有電場和磁場的儀器,讓氖原子核通過儀器,結(jié)果檢測板上出現(xiàn)了兩條軌跡。他將氖氣反復(fù)提純,結(jié)果依舊,說明存在兩種原子量的氖。這是穩(wěn)定同位素存在的第一個實驗證據(jù),這臺分離氖同位素的儀器就是第一臺質(zhì)譜儀。后來他的學(xué)生阿斯頓改進(jìn)了質(zhì)譜儀的精度,進(jìn)一步檢測到氖確實具有兩種原子質(zhì)量的同位素氖20和氖22,此后陸續(xù)從其他71種元素中發(fā)現(xiàn)了200多種同位素。由于分辨率更高,阿斯頓借助質(zhì)譜儀得到了各個同位素的比例,如氖20∶氖22約9∶1,所以氖的原子量是20.2;氯元素的主要同位素是氯35和氯37,大致比例為3∶1,所以氯的原子量就是35.5。
而隨著中子的發(fā)現(xiàn),原子內(nèi)部的秘密終于被揭開。同位素就是一種元素存在著質(zhì)子數(shù)相同而中子數(shù)不同的一系列原子。由于質(zhì)子數(shù)相同,所以同位素的電荷和電子數(shù)都相同,并具有相同的化學(xué)性質(zhì);但由于中子數(shù)不同,同位素的原子質(zhì)量也就不同,原子核的穩(wěn)定性(放射性)也有所不同。迄今發(fā)現(xiàn)的118種元素中,穩(wěn)定同位素近300種,只有20多種元素未發(fā)現(xiàn)穩(wěn)定的同位素,而放射性同位素多達(dá)3000多種,所有的元素都有放射性同位素。有意思的是,質(zhì)子數(shù)為偶數(shù)的元素比質(zhì)子數(shù)為奇數(shù)的元素有更多的穩(wěn)定同位素,通常不少于3個,而且大多數(shù)具有偶數(shù)個中子;而質(zhì)子數(shù)為奇數(shù)的元素,最多只有2個穩(wěn)定同位素,一般只有1個,而且也幾乎是偶數(shù)個中子。此外,隨著質(zhì)子數(shù)(原子序數(shù))的增長,元素豐度急劇下降,這些規(guī)律與原子核的內(nèi)部結(jié)構(gòu)和穩(wěn)定性具有什么樣的關(guān)聯(lián),成為科學(xué)家們的下一個興趣點。
幻數(shù)和穩(wěn)定島,具有魔力的原子核
為了合理地解釋原子核內(nèi)部的多核子系統(tǒng),伽莫夫最早提出了“液滴模型”,把原子核描述成一種由中子和質(zhì)子組成的密度極高且不可壓縮的液滴。后來德國科學(xué)家魏茨澤克和貝特在此模型基礎(chǔ)上發(fā)展了半經(jīng)驗公式,來量化原子核結(jié)合能。運用液滴模型能很好地解釋結(jié)合能、質(zhì)量公式以及原子核的裂變現(xiàn)象。如果給予足夠的額外能量,球形的原子核可能會扭曲成啞鈴狀,然后分裂成兩個碎片并釋放能量。但是,液滴模型卻并不能解釋原子核性質(zhì)的周期性變化現(xiàn)象。
液滴模型公式得到的結(jié)合能與實驗值之間存在一些偏差,尤其是當(dāng)質(zhì)子數(shù)或中子數(shù)為2,8,20,28,50,82,126時,原子核具有特別大的結(jié)合能(穩(wěn)定性)。觀察到這些現(xiàn)象后,美國科學(xué)家梅耶提出了“幻數(shù)”(Magic Number)概念:當(dāng)質(zhì)子或中子數(shù)為幻數(shù)時,原子核比較穩(wěn)定;而當(dāng)兩者均為幻數(shù)時,原子核因具有雙倍的“魔力”而特別穩(wěn)定。像我們熟知的氦4(2個質(zhì)子和2個中子)、氧16(8個質(zhì)子和8個中子)、鈣40(20個質(zhì)子和20個中子)、鉛208(82個質(zhì)子和126個中子),這幾個天然穩(wěn)定同位素都是這種雙幻數(shù)的原子核。
為了解釋幻數(shù)理論,梅耶和德國物理學(xué)家簡森在1949年各自獨立地提出了原子核的“殼層模型”:與原子核外的電子類似,原子核內(nèi)部也有不同能級的殼層;質(zhì)子和中子并不是隨意排列的,而是從最低能級開始填充殼層,填滿后就會形成一個閉殼層;所有殼層都是閉殼層時,原子核具有特別的穩(wěn)定性。不難看出,殼層模型更好地解釋了原子核性質(zhì)的周期律和幻數(shù)的存在。一個很好的證據(jù)就是鈣48,它有20個質(zhì)子和28個中子,屬于雙幻數(shù)原子核,雖然其中子數(shù)比正常的鈣40多了8個,具有放射性,但依然非常穩(wěn)定,半衰期超過60億年!
由此,我們也就應(yīng)該明白為何科學(xué)家們?nèi)绱似诖?8的觀測。氧28的原子核中有8個質(zhì)子和20個中子,具備雙幻數(shù)的條件,是極可能穩(wěn)定的原子核,雖然實驗結(jié)果并非預(yù)測的那樣,氧28在大約10-21秒內(nèi)就衰變成了4個中子和1個氧24原子。值得一提的是,在本次觀測氧28的實驗中,富含中子的鈣48就是最初始的炮彈,用它轟擊鈹靶產(chǎn)生氟29后,再轟擊液氫靶,使氟29丟掉一個質(zhì)子,產(chǎn)生氧28。
在殼層模型基礎(chǔ)上,美國化學(xué)家西博格在20世紀(jì)60年代末提出了“穩(wěn)定島假說”。他將質(zhì)子數(shù)和中子數(shù)作為坐標(biāo)系的x、y軸,原子核穩(wěn)定性作為z軸,可以觀察到各個穩(wěn)定同位素都大致處于一條“穩(wěn)定山脈”上,越接近幻數(shù)的同位素越穩(wěn)定;另一方面,當(dāng)質(zhì)子和中子數(shù)越高時,同位素越不穩(wěn)定,但仍然有可能在114號、120號、126號元素附近存在一個“穩(wěn)定島”,對應(yīng)的中子數(shù)為184左右。遺憾的是,這幾個預(yù)測可能穩(wěn)定的同位素還沒有合成觀測到,但是科學(xué)家們也在穩(wěn)定島理論指引下合成了一批新的元素,如元素周期表106號以后的元素,幾乎都是這樣發(fā)現(xiàn)的。
對于幻數(shù)和穩(wěn)定島理論,科學(xué)家們也有一些新的發(fā)現(xiàn)。如117號同位素衰變的產(chǎn)物鐒266顯示出11小時的半衰期,對如此重元素的原子來說是非常長的;它有103個質(zhì)子和163個中子,暗示了尚未發(fā)現(xiàn)的可能幻數(shù)。還有學(xué)者報道,6、14、16、30、32也可能是新的幻數(shù)。我國和其他國家科學(xué)家在2007年合作發(fā)現(xiàn),108號元素[~符號~]270半衰期長達(dá)22秒,遠(yuǎn)超[~符號~]265(不到半毫秒),間接驗證了模型和理論預(yù)言的質(zhì)子數(shù)108和中子數(shù)162也可能是幻數(shù)。
殼層模型成功預(yù)言了在雙幻核附近的超重核存在,但只能針對球形核,無法解釋非球形原子核的核子振動和轉(zhuǎn)動等規(guī)律,因此丹麥科學(xué)家小玻爾和莫特森在1953年提出了原子核的“集體模型”(也稱統(tǒng)一模型),綜合考慮原子核中單粒子運動和集體運動,結(jié)合了殼層模型和液滴模型來解釋兩者都無法單獨解釋的某些原子核的磁性和電學(xué)性質(zhì)。
應(yīng)用同位素,造福人類
科學(xué)家發(fā)現(xiàn)或合成的各類同位素有3000多種,究竟有什么用途呢?我們知道,大多數(shù)在自然界中天然存在的元素都存在一種或幾種穩(wěn)定的同位素,這種在自然界無處不在的特性使得同位素應(yīng)用具有普遍性,在地質(zhì)土壤、農(nóng)業(yè)食品、臨床藥物、生態(tài)環(huán)境等領(lǐng)域有著廣泛應(yīng)用。
首先,元素的同位素豐度比常常是固定的,但在自然界的多種物理、化學(xué)、生物作用下,又會在某一時期、某一地域產(chǎn)生小幅的波動,因此穩(wěn)定同位素保存著自然界一定的時空信息,對于研究特定物質(zhì)的溯源、轉(zhuǎn)化具有重要價值。比如氧同位素就可以提供關(guān)于古大氣、古海洋、古生物和古氣候等方面的信息,通過測量海洋沉積物中硫酸鹽的氧17同位素,可以推斷出過去大氣中氧氣含量的變化。又如食品領(lǐng)域,常常使用碳13、氮15等同位素差異,對有機蔬菜、水果、植物油、葡萄酒、咖啡等進(jìn)行產(chǎn)地溯源或摻假鑒定。
其次,穩(wěn)定同位素氘、碳13、氮15、氧18等,可以作為示蹤劑來標(biāo)記化合物,配合質(zhì)譜、核磁共振、光譜等分析手段,來測定、追蹤化合物中某個或多個特定原子是否參與反應(yīng),從而定性、定量地了解反應(yīng)的機理、途徑、位點等,在蛋白質(zhì)定量組學(xué)、代謝研究、環(huán)境分析、臨床研究等領(lǐng)域已經(jīng)成為高效率、高靈敏度的標(biāo)準(zhǔn)方法。特別是在醫(yī)學(xué)領(lǐng)域,因為沒有放射性,穩(wěn)定同位素示蹤劑可以用于包括孕婦、嬰兒的任何患者,如PET診斷試劑、碳13-呼氣法檢測幽門螺桿菌等。
穩(wěn)定同位素的制備一般可以從自然界中分離得到,如廣泛使用的重水就可以從水中通過蒸餾、電解或化學(xué)方式分離提取,進(jìn)而制備各類氘代試劑。氘代試劑也是核磁共振檢測使用的溶劑,并可用于對OLED面板進(jìn)行氘化處理,能顯著提升器件亮度和壽命。此外,與氘能發(fā)生核聚變反應(yīng)的氦3也是穩(wěn)定同位素,因為聚變過程中不產(chǎn)生中子,所以放射性小,有望成為清潔、安全、高效的核燃料。
所有的元素都有放射性同位素,相對于穩(wěn)定同位素,放射性同位素具有一定的半衰期,通??扇斯ぶ苽洹S捎谕凰氐陌胨テ趲缀跏呛愣ǖ?,因此可以用來定年。比如地球的年齡就是根據(jù)巖石和隕石中的鈾元素和其衰變產(chǎn)物鉛元素進(jìn)行測定的,還有大家熟知的碳14斷代,就是通過檢測有機樣本中衰變剩余的碳14含量來確定樣品的大致年代。
由于放射性同位素的檢測靈敏度極高,因此在石油化工、水利水文、農(nóng)業(yè)畜牧等領(lǐng)域進(jìn)行放射性示蹤,來研究物質(zhì)的遷移、轉(zhuǎn)化、殘留,是最具優(yōu)勢的應(yīng)用方向。還有工業(yè)上不少探傷、監(jiān)測設(shè)備,也是利用放射性同位素的射線作為發(fā)射源監(jiān)控的。另外,利用放射性同位素進(jìn)行輻照,也廣泛使用于食品滅菌消毒、農(nóng)業(yè)育種增產(chǎn)、材料加工、體外照射治療等。近年來,靶向抗體與放射性核素結(jié)合生成的靶向治療核藥物成為新興的癌癥治療策略,北京大學(xué)劉志博團隊基于成纖維細(xì)胞活化蛋白開發(fā)了一系列結(jié)合氟18、鉍213、鉛212等的核藥物,展現(xiàn)了顯著的腫瘤抑制作用,且毒副作用較低。
當(dāng)然,直到今天,我們對于原子核內(nèi)部的運行機制還并未徹底了解清楚,現(xiàn)有的核物理和核化學(xué)理論模型還需要完善。宇宙中元素如何演化?原子核有沒有極限?周期律是否繼續(xù)?答案也許就在不遠(yuǎn)的未來。
(光明日報 作者:周江,系北京大學(xué)化學(xué)與分子工程學(xué)院教授)
版權(quán)聲明:凡注明“來源:中國西藏網(wǎng)”或“中國西藏網(wǎng)文”的所有作品,版權(quán)歸高原(北京)文化傳播有限公司。任何媒體轉(zhuǎn)載、摘編、引用,須注明來源中國西藏網(wǎng)和署著作者名,否則將追究相關(guān)法律責(zé)任。